Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(27): eabj5633, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857479

RESUMO

Pharmacodynamic (PD) studies are an essential component of preclinical drug discovery. Current approaches for PD studies, including the analysis of novel kidney disease targeting therapeutic agents, are limited to animal models with unclear translatability to the human condition. To address this challenge, we developed a novel approach for PD studies using transplanted, perfused human kidney organoids. We performed pharmacokinetic (PK) studies with GFB-887, an investigational new drug now in phase 2 trials. Orally dosed GFB-887 to athymic rats that had undergone organoid transplantation resulted in measurable drug exposure in transplanted organoids. We established the efficacy of orally dosed GFB-887 in PD studies, where quantitative analysis showed significant protection of kidney filter cells in human organoids and endogenous rat host kidneys. This widely applicable approach demonstrates feasibility of using transplanted human organoids in preclinical PD studies with an investigational new drug, empowering organoids to revolutionize drug discovery.


Assuntos
Nefropatias , Organoides , Animais , Descoberta de Drogas , Drogas em Investigação , Humanos , Rim , Ratos
2.
J Med Chem ; 65(4): 3575-3596, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35143203

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic human disease, but to date, only one therapy (tolvaptan) is approved to treat kidney cysts in ADPKD patients. Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, has been implicated as a target for treating ADPKD. However, no compounds have been disclosed to date that selectively inhibit CDK5 while sparing the broader CDK family members. Herein, we report the discovery of CDK5 inhibitors, including GFB-12811, that are highly selective over the other tested kinases. In cellular assays, our compounds demonstrate CDK5 target engagement while avoiding anti-proliferative effects associated with inhibiting other CDKs. In addition, we show that the compounds in this series exhibit promising in vivo PK profiles, enabling their use as tool compounds for interrogating the role of CDK5 in ADPKD and other diseases.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas , Células HEK293 , Humanos , Modelos Moleculares , Rim Policístico Autossômico Dominante/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Kidney Int Rep ; 6(10): 2575-2584, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34622097

RESUMO

INTRODUCTION: A critical unmet need exists for precision therapies for chronic kidney disease. GFB-887 is a podocyte-targeting, small molecule inhibitor of transient receptor potential canonical-5 (TRPC5) designed specifically to treat patients with glomerular kidney diseases characterized by an overactivation of the TRPC5-Rac1 pathway. In a first-in-human study, GFB-887 was found to be safe and well tolerated, had a pharmacokinetic (PK) profile allowing once-daily dosing, and dose dependently decreased urinary Rac1 in healthy adults. METHODS: TRACTION-2 is a phase 2a, double-blind, placebo-controlled, multiple-ascending dose study of GFB-887 in patients with focal segmental glomerulosclerosis (FSGS), treatment-resistant minimal change disease (TR-MCD), or diabetic nephropathy (DN) (NCT04387448). Adult patients on stable renin-angiotensin system blockade and/or immunosuppression with persistent proteinuria will be randomized and dosed in 3 ascending dose levels to GFB-887 or placebo for 12 weeks. Cohorts may be expanded or biomarker-enriched depending upon results of an adaptive interim analysis. RESULTS: The primary objective is to evaluate the effect of increasing doses of GFB-887 on proteinuria. Safety and tolerability, quality of life, pharmacokinetic/pharmacodynamic profiles, and the potential association of urinary Rac1 with efficacy will also be evaluated. The projected sample size has 80% power to detect a treatment difference in proteinuria of 54% (FSGS/TR-MCD) or 44% (DN) compared to placebo. CONCLUSION: TRACTION-2 will explore whether targeted blockade of the TRPC5-Rac1 pathway with GFB-887 is an efficacious and safe treatment strategy for patients with FSGS, TR-MCD, and DN and the potential value of urinary Rac1 as a predictive biomarker of treatment response.

4.
ACS Med Chem Lett ; 10(11): 1579-1585, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31749913

RESUMO

The nonselective Ca2+-permeable transient receptor potential (TRP) channels play important roles in diverse cellular processes, including actin remodeling and cell migration. TRP channel subfamily C, member 5 (TRPC5) helps regulate a tight balance of cytoskeletal dynamics in podocytes and is suggested to be involved in the pathogenesis of proteinuric kidney diseases, such as focal segmental glomerulosclerosis (FSGS). As such, protection of podocytes by inhibition of TRPC5 mediated Ca2+ signaling may provide a novel therapeutic approach for the treatment of proteinuric kidney diseases. Herein, we describe the identification of a novel TRPC5 inhibitor, GFB-8438, by systematic optimization of a high-throughput screening hit, pyridazinone 1. GFB-8438 protects mouse podocytes from injury induced by protamine sulfate (PS) in vitro. It is also efficacious in a hypertensive deoxycorticosterone acetate (DOCA)-salt rat model of FSGS, significantly reducing both total protein and albumin concentrations in urine.

5.
Eur J Drug Metab Pharmacokinet ; 41(5): 567-74, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25898809

RESUMO

IDX184 is a phosphoramidate prodrug of 2'-methylguanosine-5'-monophosphate, developed to treat patients infected with hepatitis C virus. A mass balance study of radiolabeled IDX184 and pharmacokinetic studies of IDX184 in portal vein-cannulated monkeys revealed relatively low IDX184 absorption but higher exposure of IDX184 in the portal vein than in the systemic circulation, indicating >90 % of the absorbed dose was subject to hepatic extraction. Systemic exposures to the main metabolite, 2'-methylguanosine (2'-MeG), were used as a surrogate for liver levels of the pharmacologically active entity 2'-MeG triphosphate, and accordingly, systemic levels of 2'-MeG in the monkey were used to optimize formulations for further clinical development of IDX184. Capsule formulations of IDX184 delivered acceptable levels of 2'-MeG in humans; however, the encapsulation process introduced low levels of the genotoxic impurity ethylene sulfide (ES), which necessitated formulation optimization. Animal pharmacokinetic data guided the development of a tablet with trace levels of ES and pharmacokinetic performance equal to that of the clinical capsule in the monkey. Under fed conditions in humans, the new tablet formulation showed similar exposure to the capsule used in prior clinical trials.


Assuntos
Guanosina Monofosfato/análogos & derivados , Guanosina/análogos & derivados , Fígado/efeitos dos fármacos , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Animais , Cápsulas/administração & dosagem , Cápsulas/farmacocinética , Química Farmacêutica/métodos , Guanosina/administração & dosagem , Guanosina/farmacocinética , Guanosina Monofosfato/administração & dosagem , Guanosina Monofosfato/farmacocinética , Haplorrinos , Humanos , Masculino , Comprimidos/administração & dosagem , Comprimidos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...